Generating time-correlated photon pairs at the nanoscale is a prerequisite to creating highly integrated optoelectronic circuits that perform quantum computing tasks based on heralded single photons. Here, we demonstrate fulfilling this requirement with a generic tip-surface metal junction. When the junction is luminescing under DC bias, inelastic tunneling events of single electrons produce a stream of visible photons of plasmonic origin whose superbunching index is 17 (improved to a record of 70 by the authors during publication) when measured with a 53-ps instrumental resolution limit. The effect is driven electrically, rather than optically. This discovery has immediate and profound implications for quantum optics and cryptography, notwithstanding its fundamental importance to basic science and its ushering in of heralded photon experiments on the nanometer scale. Tunnel junctions are important light sources in their own right that convert electric potential energy into photons, largely through one electron–one photon (1e− → 1γ) inelastic tunneling events. These junctions facilitate many intricate fundamental processes such as time-correlated two-electron tunneling (1, 2), o...